ktr联轴器另外还需要了解传感器的工作原理及应用选择,提及一点,例如采用涡流传感器测量的位移和应用加速度传感器,通过两次积分输出的位移所得到的东西是完全不一样的。涡流传感器测量轴承与轴杆之间的相对运动;加速度传感器测量轴承顶部的振动,然后转换成位移。如整个轴承振动的很厉害,轴与轴承的相对运动很小,涡流传感器就不能反应出这样的状态,而加速度传感器则可以。

大庆联轴器被安装在动力传动的驱动侧和被动侧之间,起到传递旋转扭力、补偿轴间安装偏差、吸收设备振动和缓冲载荷冲击等作用。联轴器的功能之一是通过自身形变来吸收和补偿轴与轴之间偏差。柔性越大则表示其吸收偏差的能力越强;柔性越小则表示吸收偏差的能力越弱。通常来讲这种轴与轴之间的偏差分为以下三个方面:联轴器与外围设备的连接都是通过将设备的轴插入联轴器的轴孔来实现。
KTR ROTEX 42 AL-H 92ShA & 98ShA & 64ShD 1a d1Ø=0-55mm 1a d2Ø=0-55mm联轴器轴振即转轴的径向振动,目前汽轮机组的轴振普遍采用涡流探头来测得。其探头中的线圈有高频电流通过时,产生高频电磁场并使得被测转子轴颈表面产生感应电流,并转化成电压表示出来。而这个电压随轴表面与传感器之间距离改变而变化,如此即实现了对转轴振动的测量。轴振一般用位移值表示,单位为微米。如果涡流传感器固定在轴瓦上,测取的是转轴与轴承之间的相对振动;如果传感器固定在基础上,则测取的振动近似认为是转轴的绝对振动。
ktr联轴器位移、速度、加速度都是振动测量的度量参数。就概念而言,位移的测量能够直接反映轴承固定螺栓和其它固定件上的应力状况。例如:通过分析透平机上滑动轴承的位移,可以知道其轴承内轴杆的位置和摩擦情况。速度反映轴承及其它相关结构所承受的疲劳应力。而这正是导致旋转设备故障的重要原因。加速度则反映设备内部各种力的综合作用。表达上三者均为正弦曲线,分别有90度,180度的相位差。现场应用上,对于低速设备(转速小于1000RPM)来说,位移是最好的测量方法。而那些加速度很小,其位移较大的设备,一般采用折衷的方法,即采用速度测量,对于高速度或高频设备,有时尽管位移很小,速度也适中,但其加速度却可能很高的设备采用加速度测量是非常重要的手段。另外还需要了解传感器的工作原理及应用选择,提及一点,例如采用涡流传感器测量的位移和应用加速度传感器通过两次积分输出的位移所得到的东西是完全不一样的。涡流传感器测量轴承与轴杆之间的相对运动,加速度传感器测量轴承顶部的振动,然后转换成位移。如整个轴承振动的很厉害,轴与轴承的相对运动很小,涡流传感器就不能反应出这样的状态,而加速度传感器则可以。两种传感器测量两种不同的现象。理解了这些,你就能明白为什么许多有经验的工程师将涡流传感器和加速度传感器组合应用以便既可观察轴承相对于地面的振动,又能监测到轴相对于轴承的振动了。通过这样的方式能得到更完整的机器状态
大庆联轴器另外还需要了解传感器的工作原理及应用选择,提及一点,例如采用涡流传感器测量的位移和应用加速度传感器,通过两次积分输出的位移所得到的东西是完全不一样的。涡流传感器测量轴承与轴杆之间的相对运动;加速度传感器测量轴承顶部的振动,然后转换成位移。如整个轴承振动的很厉害,轴与轴承的相对运动很小,涡流传感器就不能反应出这样的状态,而加速度传感器则可以。
性越小则表示吸收偏差的能力越弱.通常来讲,这种轴与轴之间的偏差分为以下三个方面:KTR ROTEX 42 AL-H 92ShA & 98ShA & 64ShD 1a d1Ø=0-55mm 1a d2Ø=0-55mm联轴器与外围设备的连接都是通过将设备的轴插入联轴器的轴孔来实.
汽轮机组的振动按相对位置分,大致可分为轴承座的绝对振动、轴与轴承座的相对振动和轴的绝对振动。按传感器的接触方式分,可分为接触式传感器(如磁电式,压电式传感器等)和非接触式传感器(如电容式、电感式、电涡流传感器等)。
另外还需要了解传感器的工作原理及应用选择,提及一点,例如采用涡流传感器测量的位移和应用加速度传感器,通过两次积分输出的位移所得到的东西是完全不一样的。涡流传感器测量轴承与轴杆之间的相对运动;加速度传感器测量轴承顶部的振动,然后转换成位移。如整个轴承振动的很厉害,轴与轴承的相对运动很小,涡流传感器就不能反应出这样的状态,而加速度传感器则可以。
联轴器是指联接两轴或轴与回转件,在传递运动和动力过程中一同回转,在正常情况下不脱开的一种装置。有时也作为一种安全装置用来防止被联接机件承受过大的载荷,起到过载保护的作用。联轴器,是轴与轴高精度连接的接口。
位移、速度、加速度都是振动测量的度量参数。就概念而言,位移的测量能够直接反映轴承固定螺栓和其它固定件上的应力状况。例如:通过分析透平机上滑动轴承的位移,可以知道其轴承内轴杆的位置和摩擦情况。速度反映轴承及其它相关结构所承受的疲劳应力。而这正是导致旋转设备故障的重要原因。加速度则反映设备内部各种力的综合作用。表达上三者均为正弦曲线,分别有90度,180度的相位差。现场应用上,对于低速设备(转速小于1000RPM)来说,位移是最好的测量方法。而那些加速度很小,其位移较大的设备,一般采用折衷的方法,即采用速度测量,对于高速度或高频设备,有时尽管位移很小,速度也适中,但其加速度却可能很高的设备采用加速度测量是非常重要的手段。另外还需要了解传感器的工作原理及应用选择,提及一点,例如采用涡流传感器测量的位移和应用加速度传感器通过两次积分输出的位移所得到的东西是完全不一样的。涡流传感器测量轴承与轴杆之间的相对运动,加速度传感器测量轴承顶部的振动,然后转换成位移。如整个轴承振动的很厉害,轴与轴承的相对运动很小,涡流传感器就不能反应出这样的状态,而加速度传感器则可以。两种传感器测量两种不同的现象。理解了这些,你就能明白为什么许多有经验的工程师将涡流传感器和加速度传感器组合应用以便既可观察轴承相对于地面的振动,又能监测到轴相对于轴承的振动了。通过这样的方式能得到更完整的机器状态
安装偏差、吸收设备振动和缓冲载荷冲击等作用.联轴器的功能之一是通过自身形变来吸收和补偿轴与轴之间偏差。柔性越大则表示其吸收偏差的能力越强;柔
形变来吸收和补偿轴与轴之间偏差.柔性越大则表示其吸收偏差的能力越强;柔性越小则表示吸收偏差的能力越弱。通常来讲,这种轴与轴之间的偏差分为以下
轴振即转轴的径向振动,目前汽轮机组的轴振普遍采用涡流探头来测得。其探头中的线圈有高频电流通过时,产生高频电磁场并使得被测转子轴颈表面产生感应电流,并转化成电压表示出来。而这个电压随轴表面与传感器之间距离改变而变化,如此即实现了对转轴振动的测量。轴振一般用位移值表示,单位为微米。如果涡流传感器固定在轴瓦上,测取的是转轴与轴承之间的相对振动;如果传感器固定在基础上,则测取的振动近似认为是转轴的绝对振动。
位移、速度、加速度都是振动测量的度量参数。就概念而言,位移的测量能够直接反映轴承固定螺栓和其它固定件上的应力状况。例如:通过分析透平机上滑动轴承的位移,可以知道其轴承内轴杆的位置和摩擦情况。速度反映轴承及其它相关结构所承受的疲劳应力。而这正是导致旋转设备故障的重要原因。加速度则反映设备内部各种力的综合作用。表达上三者均为正弦曲线,分别有90度,180度的相位差。现场应用上,对于低速设备(转速小于1000RPM)来说,位移是最好的测量方法。而那些加速度很小,其位移较大的设备,一般采用折衷的方法,即采用速度测量,对于高速度或高频设备,有时尽管位移很小,速度也适中,但其加速度却可能很高的设备采用加速度测量是非常重要的手段。另外还需要了解传感器的工作原理及应用选择,提及一点,例如采用涡流传感器测量的位移和应用加速度传感器通过两次积分输出的位移所得到的东西是完全不一样的。涡流传感器测量轴承与轴杆之间的相对运动,加速度传感器测量轴承顶部的振动,然后转换成位移。如整个轴承振动的很厉害,轴与轴承的相对运动很小,涡流传感器就不能反应出这样的状态,而加速度传感器则可以。两种传感器测量两种不同的现象。理解了这些,你就能明白为什么许多有经验的工程师将涡流传感器和加速度传感器组合应用以便既可观察轴承相对于地面的振动,又能监测到轴相对于轴承的振动了。通过这样的方式能得到更完整的机器状态